1. Kaleem Kashif. “From detailed acoustic analysis to AI: designing and developing advanced speech analysis tools.” PhD diss., Sapienza University of Rome, 2024.
  2. Di Benedetto, Maria-Gabriella, Luca De Nardis, Kaleem Kashif, Jeung-Yoon Choi, and Stefanie Shattuck-Hufnagel. “Toward the long-term evolution of the xkl speech analysis software.” The Journal of the Acoustical Society of America 156, no. 4_Supplement (2024): A77-A78.
  3.  Kashif, K., Alwan, A., Wu, Y., De Nardis, L., & Di Benedetto, M. (2024). MKELM based multiclassification model for foreign accent identification. Heliyon, e36460. https://doi.org/10.1016/j.heliyon.2024.e36460
  4. Kashif Kaleem, Yizhi Wu, and Adjeisah Michael. “Consonant Phoneme Based Extreme Learning Machine (ELM) Recognition Model for Foreign Accent  Identification. ” The World Symposium on Software Engineering. ACM, 2019. https://doi.org/10.1145/3362125.3362130.
  5. Abdur Rasool, Ran Tao, Kaleem Kashif, Waqas Khan, ‘Statistic Solution for Machine Learning to Analyze Heart Disease Data ’Proceedings of 2020 12th International Conference on Machine Learning and Computing https://doi.org/10.1145/3383972.3384061
  6. Halepoto, Habiba, Tao Gong, and Kaleem Kashif. “Real-Time Quality Assessment of Neppy Mélange Yarn Manufacturing Using Macropixel Analysis.” Tekstilec     62.4 (2019) https://DOI.org/10.14502/Tekstilec2019.62.242-247
  7. Gu, Xiaochun, Fang Han, Zhijie Wang, Kaleem Kashif, and Wenlian Lu. “Enhancement of gamma oscillations in E/I neural networks by increase of difference between external inputs.” Electronic Research Archive (2021). http://doi.org/10.3934/era.2021035
  8. Kaleem Kashif, Luca De Nardis, Abeer Alwan, and Maria-Gabriella Di Benedetto. ” Multiple Kernel-based Extreme Learning Machine model for Multi-class classification of Foreign Accent Identification. ” Is in progress and ready to be submitted
  9. Zhu, Qinghua, Kaleem Kashif, et al. ” Dynamical mechanisms of a monolayer binocular rivalry model with fixed and time-dependent stimuli.” Nonlinear Dynamics 106.1 (2021): 927 944.  https://doi.org/10.1007/s11071-021-06828-y